Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes
نویسندگان
چکیده
BACKGROUND Prenatal mercury (Hg) exposure is associated with adverse child neurobehavioral outcomes. Because Hg can interfere with placental functioning and cross the placenta to target the fetal brain, prenatal Hg exposure can inhibit fetal growth and development directly and indirectly. OBJECTIVES We examined potential associations between prenatal Hg exposure assessed through infant toenail Hg, placental DNA methylation changes, and newborn neurobehavioral outcomes. METHODS The methylation status of > 485,000 CpG loci was interrogated in 192 placental samples using Illumina's Infinium HumanMethylation450 BeadArray. Hg concentrations were analyzed in toenail clippings from a subset of 41 infants; neurobehavior was assessed using the NICU Network Neurobehavioral Scales (NNNS) in an independent subset of 151 infants. RESULTS We identified 339 loci with an average methylation difference > 0.125 between any two toenail Hg tertiles. Variation among these loci was subsequently found to be associated with a high-risk neurodevelopmental profile (omnibus p-value = 0.007) characterized by the NNNS. Ten loci had p < 0.01 for the association between methylation and the high-risk NNNS profile. Six of 10 loci reside in the EMID2 gene and were hypomethylated in the 16 high-risk profile infants' placentas. Methylation at these loci was moderately correlated (correlation coefficients range, -0.33 to -0.45) with EMID2 expression. CONCLUSIONS EMID2 hypomethylation may represent a novel mechanism linking in utero Hg exposure and adverse infant neurobehavioral outcomes.
منابع مشابه
Placental FKBP5 Genetic and Epigenetic Variation Is Associated with Infant Neurobehavioral Outcomes in the RICHS Cohort
Adverse maternal environments can lead to increased fetal exposure to maternal cortisol, which can cause infant neurobehavioral deficits. The placenta regulates fetal cortisol exposure and response, and placental DNA methylation can influence this function. FK506 binding protein (FKBP5) is a negative regulator of cortisol response, FKBP5 methylation has been linked to brain morphology and menta...
متن کاملThird trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta
Strong evidence implicates maternal phthalate exposure during pregnancy in contributing to adverse birth outcomes. Recent research suggests these effects might be mediated through the improper regulation of DNA methylation in offspring tissue. In this study, we examined associations between prenatal phthalate exposure and DNA methylation in human placenta. We recruited 181 mother-newborn pairs ...
متن کاملPlacental 11-Beta Hydroxysteroid Dehydrogenase Methylation Is Associated with Newborn Growth and a Measure of Neurobehavioral Outcome
BACKGROUND There is growing evidence that the intrauterine environment can impact the neurodevelopment of the fetus through alterations in the functional epigenome of the placenta. In the placenta, the HSD11B2 gene encoding the 11-beta hydroxysteroid dehydrogenase enzyme, which is responsible for the inactivation of maternal cortisol, is regulated by DNA methylation, and has been shown to be su...
متن کاملO-37: Pseudomalignant Nature of Placenta during Normal and Pathological Gestation Is Regulated by Epigenetic Mechanisms which Can be Exploited To Design Non-Invasive Fetal Dna Markers
Background Placentation shares many analogues with the development of tumors such as rapid proliferation, invasiveness, gene expression profiles especially the expression of tumor suppressor genes, oncogenes and matrixmetallo proteinases (MMPs). Thus, a placenta has been described as a pseudomalignant tissue. However, placentation is tightly regulated and any deregulation of this pseudomalignan...
متن کاملEpigenome-Wide Assessment of DNA Methylation in the Placenta and Arsenic Exposure in the New Hampshire Birth Cohort Study (USA)
BACKGROUND Arsenic is one of the most commonly encountered environmental toxicants, and research from model systems has suggested that one mode of its toxic activity may be through alterations in DNA methylation. In utero exposure to arsenic can affect fetal, newborn, and infant health, resulting in a range of phenotypic outcomes. OBJECTIVES This study examined variation in placental DNA meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 123 شماره
صفحات -
تاریخ انتشار 2015